
Review Resources:

Code repositories and documentation were used during this audit.

Auditors:

adriro

pandadefi

Review Summary

Scope

Code Evaluation Matrix

Findings Explanation

High Findings

1. High - sDola vault is susceptible to the inf lation attack

Technical Details

Impact

Recommendation

Developer Response

2. High - sDola should not be allowed to be borrowed in a lending borrowing market

Technical Details

Impact

Recommendation

yAudit Inverse Finance Dola savings

Review

Table of Contents

Developer Response

Low Findings

1. Low - Consider implementing two-step procedure for updating protocol addresses

Technical Details

Impact

Recommendation

Developer Response

2. Low - Missing checks for address(0) on stake() recipient

Technical Details

Impact

Recommendation

Developer Response

3. Low - buyDBR() call with incorrect exactDbrOut might lead to overpaying for dbr

Technical Details

Impact

Recommendation

Developer Response

4 . Low - Incorrect overf low check in maxYearlyRewardBudget

Technical Details

Impact

Recommendation

Developer Response

5. Low - Missing sweep() function as part of sDola contract

Technical Details

Impact

Recommendation

Developer Response

Gas Saving Findings

1. Gas - Unnecessary call to getDbrReserve() in buyDBR()

Technical Details

Impact

Recommendation

Developer Response

2. Gas - Cache storage variables in reward calculation logic

Technical Details

Impact

Recommendation

Developer Response

3. Gas - In getDolaReserve() add an option to pass getDbrReserve()

Technical Details

Impact

Recommendation

Developer Response

4 . Gas - Week elapsed time calculation can be simplified

Technical Details

Impact

Recommendation

Developer Response

Informational Findings

1. Informational - Missing limits when setting max amounts

Technical Details

Impact

Recommendation

Developer Response

2. Informational - Missing event for a crit ical parameter change

Technical Details

Impact

Recommendation

Developer Response

3. Informational - public functions not called by the contract should be declared

external instead

Technical Details

Impact

Recommendation

Developer Response

4 . Informational - else block unnecessary

Technical Details

Impact

Recommendation

Developer Response

Final remarks

Dola Savings

DolaSavings is a staking platform allowing users to earn rewards by deposit ing DOLA tokens. It

aims to promote long-term holding by distributing DBR tokens based on the duration and

amount of DOLA staked.

The contracts of the Dola savings Repo were reviewed over 3 days. The code review was

performed by 2 auditors between January 4th and January 7th, 2024 . The repository was

under active development during the review, but the review was limited to the latest commit at

the start of the review. This was commit 5c38feed71ef71425ecd6b121574220e94ab8f8d for

the Dola savings repo.

The scope of the review consisted of the following contracts at the specific commit:

src/DolaSavings.sol

src/sDola.sol

src/sDolaHelper.sol

Review Summary

Scope

https://github.com/InverseFinance/dola-savings/tree/dev
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d

After the findings were presented to the Dola savings team, fixes were made and included in

several PRs.

This review is a code review to identify potential vulnerabilit ies in the code. The reviewers did

not investigate security practices or operational security and assumed that privileged

accounts could be trusted. The reviewers did not evaluate the security of the code relative to a

standard or specification. The review may not have identified all potential attack vectors or

areas of vulnerability.

yAudit and the auditors make no warranties regarding the security of the code and do not

warrant that the code is free from defects. yAudit and the auditors do not represent nor imply

to third parties that the code has been audited nor that the code is free from defects. By

deploying or using the code, Inverse Finance and users of the contracts agree to use the code

at their own risk.

Category Mark Descript ion

Access Cont rol Good Follows st andard pract ices.

Mat hemat ics Good
Calculat ions are accurat e wit h proper overf low

checks.

Complexit y Good Code is well-organized and modular.

Libraries Good Uses well-t est ed libraries wit hout modificat ions.

Decent ralizat ion Good User f unds are saf e f rom governance act ions.

Code st abilit y Good
St able wit h no known issues in t he current

environment .

Document at ion Low Funct ions are lacking Nat Spec comment s.

Monit oring Low Missing event s on st at e variable changes.

Test ing and

verificat ion
Average Adequat e t est s cover major f unct ionalit ies.

Code Evaluation Matrix

Findings are broken down into sections by their respective impact:

Crit ical, High, Medium, Low impact

These are findings that range from attacks that may cause loss of funds, impact

control/ownership of the contracts, or cause any unintended consequences/actions

that are outside the scope of the requirements.

Gas savings

Findings that can improve the gas efficiency of the contracts.

Informational

Findings including recommendations and best practices.

The first depositor in the sDola.sol contract can inf late the value of a share to cause rounding

issues in subsequent deposits.

The sDola ERC4626 vault is susceptible to a vulnerability known as the Inflation Attack, in

which the first depositor can be front-run by an attacker to steal their deposit.

Let’s imagine a user wants to deposit X amount of DOLA in sDola.

Findings Explanation

High Findings

1. High - sDola vault is suscept ible to the inf lat ion attack

T e c h n i c a l D e t a i l s

The attacker deposits 1 wei of DOLA in sDola, they own 1 share of sDOLA.1

The attacker stakes X / 2 DOLA in DolaSaving on behalf of the sDola vault, now total

assets in sDola are X / 2 + 1 .

2

The user deposit transaction goes through, they are minted roundDown(X * 1 / (X / 2 +

1)) = 1 share.

3

The attacker redeems their share of sDOLA and receives (X + X / 2) / 2 = 3/4 * X . Their

profit is 3/4 * X - X / 2 - 1 = X / 4 - 1 .

4

https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L15

High. An attacker can steal part of the init ial deposit in the vault.

There are different ways to mitigate this attack. One of the simplest alternatives is to mint an

init ial set of dead shares when the vault is deployed so that the attack would become

impractical to perform.

Addressed in https://github.com/InverseFinance/dola-savings/pull/9/files.

The sDola price can be manipulated with deposits to DolaSavings on the behalf of sDola

contract.

When an asset whose price can be manipulated atomically is used as collateral and borrowed,

the lending market is at risk. If a large deposit is made to DolaSavings in the name of the sDola

contract, it artificially inf lates the value of sDola. This can lead to a scenario where the borrower

can borrow more than the actual collateral value. See: cream finance hack

High. sDola can’t be borrowed.

Document the issue, and make sure protocol integrators are aware of the pitfalls of using

sDola .

Addressed in https://github.com/InverseFinance/dola-

savings/pull/8/commits/0c8f83a4afa5cb25513ed74060cf369ddd55d982.

A copy-paste error or a typo may end up bricking protocol operability.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. High - sDola should not be allowed to be borrowed in a lending borrowing

market

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Low Findings

1. Low - Consider implement ing two-step procedure for updat ing protocol

addresses

https://medium.com/immunefi/hack-analysis-cream-finance-oct-2021-fc222d913fc5

The gov state variable is key to the protocol governance.

71 | function setGov(address _gov) public onlyGov { gov = _gov; }

DolaSavings.sol#L71

100 | function setGov(address _gov) external onlyGov {

101 | gov = _gov;

102 | }

sDola.sol#L100

Low. Uploading protocol governance needs to be done with extra care.

Add a two-step governance address update.

Addressed in https://github.com/InverseFinance/dola-savings/pull/4 .

Funds can be staked by mistake to the address(0) .

90| function stake(uint amount, address recipient) public updateIndex(recipient) {

91| balanceOf[recipient] += amount;

92| totalSupply += amount;

93| dola.transferFrom(msg.sender, address(this), amount);

94| }

DolaSavings.sol#L91

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Low - Missing checks for address(0) on stake() recipient

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L71
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L100
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L91

Low. Funds can be lost.

Add a check to make sure the recipient isn’t address(0) .

Addressed https://github.com/InverseFinance/dola-savings/pull/4 .

With buyDBR() taking exactDolaIn and exactDbrOut as parameters, it ’s possible that a user

misused exactDbrOut is not ideal at the moment the transaction is mined. This will have the

user paying extra DolaIn .

The exactDbrOut amount might be different from the ideal amount because of changes on

chain or a mistake from the user.

sDola.sol#L88-L98

Low. Users should use the helper contracts.

Document the existence of the helper contract for users to interact with.

The check in setMaxYearlyRewardBudget() is presumably incorrect as the associated comment

reads:

cannot overf low and revert within 10,000 years

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

3. Low - buyDBR() call with incorrect exactDbrOut might lead to overpaying for

dbr

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Low - Incorrect overf low check in maxYearlyRewardBudget

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L88-L98
https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L73

Accrued rewards are calculated in updateIndex according to the following formula:

36: uint maxBudget = maxRewardPerDolaMantissa * totalSupply / mantissa;

37: uint budget = yearlyRewardBudget > maxBudget ? maxBudget :

yearlyRewardBudget;

38: uint rewardsAccrued = deltaT * budget * mantissa / 365 days;

Line 38 will overf low if deltaT * budget * mantissa > 2**256 - 1 , hence we need budget <

2**256 - 1 / (deltaT * mantissa) .

If the intention is to support up to 10 years, then the check in setMaxYearlyRewardBudget()

should be _max < type(uint).max / (365 days * 10 * mantissa) .

Low.

Adjust the overf low check in setMaxYearlyRewardBudget() .

Addressed in https://github.com/InverseFinance/dola-savings/pull/5.

The sDola contract doesn’t have a sweep() function.

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

5. Low - Missing sweep() funct ion as part of sDola contract

https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L32

Unlike DolaSaving , it ’s not possible to recover tokens sent by mistake due to the lack of a

sweep() function. The contract should only have dbr tokens; other tokens should be

recoverable by the governance multisig account.

Low. Funds sent by mistake would be lost.

+ function sweep(address token, uint amount, address to) public onlyGov {

+ require(address(dbr) != token, "Not authorized");

+ IERC20(token).transfer(to, amount);

+ }

Addressed in https://github.com/InverseFinance/dola-savings/pull/6.

getDbrReserve() calls the saving contract on the claimable() function. A claim to the saving

contract is done right before the call to claimable() , which will then always return zero.

89| savings.claim(address(this));

90| uint dolaReserve = getDolaReserve() + exactDolaIn;

91| uint dbrReserve = getDbrReserve() - exactDbrOut;

sDola.sol#L89-L91

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Gas Saving Findings

1. Gas - Unnecessary call to getDbrReserve() in buyDBR()

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L89-L91

Gas savings.

Replace line 91 by

- uint dbrReserve = getDbrReserve() - exactDbrOut;

+ uint dbrReserve = dbr.balanceOf(address(this)) - exactDbrOut;

Since getDolaReserve() is also calling getDbrReserve() it is also possible to save even more gas

with the following code:

- uint dolaReserve = getDolaReserve() + exactDolaIn;

- uint dbrReserve = getDbrReserve() - exactDbrOut;

+ uint balance = dbr.balanceOf(address(this));

+ uint dolaReserve = getK() / balance + exactDolaIn;

+ uint dbrReserve = dbr.balanceOf(address(this)) - exactDbrOut;

To save even more gas, with these changes, you could cache getK() instead of calling it twice.

Addressed in https://github.com/InverseFinance/dola-

savings/pull/3/commits/7c7683c7bdc6e5b6533b5f002cb853a2fa0d79ba.

Several storage variables are read multiple t imes in the implementation of the updateIndex

modifier and the claimable() function.

The following variables are fetched from storage multiple t imes:

yearlyRewardBudget

totalSupply

rewardIndexMantissa

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Gas - Cache storage variables in reward calculat ion logic

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L32
https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L102

Gas savings.

Consider using a local variable as a cache to prevent multiple reads from storage.

Addressed in https://github.com/InverseFinance/dola-

savings/pull/3/commits/b77a420808fb92031010fc5122c4b1b63f37b729

getDolaReserve() and getDbrReserve() are often called within the same scope, with

getDolaReserve() making a call to getDbrReserve() , it ’s possible to save gas by passing the

getDbrReserve() result to getDolaReserve() .

29 | function getDbrOut(uint dolaIn) public view returns (uint dbrOut) {

30 | require(dolaIn > 0, "dolaIn must be positive");

31 | uint dolaReserve = sDola.getDolaReserve();

32 | uint dbrReserve = sDola.getDbrReserve();

Here we can see getDolaReserve() and getDbrReserve() are used in the same scope.

File: sDola.sol

68 | function getDolaReserve() public view returns (uint) {

69 | return getK() / getDbrReserve();

70 | }

71 |

72 | function getDbrReserve() public view returns (uint) {

73 | return dbr.balanceOf(address(this)) + savings.claimable(address(this));

74 | }

The getDbrReserve() result can be passed to getDolaReserve() to prevent additional calls to

balanceOf() and claimable() methods.

sDola.sol#L73-L79

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

3. Gas - In getDolaReserve() add an opt ion to pass getDbrReserve()

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L73-L79

sDolaHelper.sol#L29-L36

Gas savings.

 function getDolaReserve() public view returns (uint) {

 return getK() / getDbrReserve();

 }

+ function getDolaReserve(dbrReserve) public view returns (uint) {

+ return getK() / dbrReserve;

+ }

With that added it ’s possible to update the helper contract functions getDbrOut() and

getDolaIn().

Addressed in https://github.com/InverseFinance/dola-

savings/pull/3/commits/1f01bb0cc94e359830b5e44b7c299280ec0d4bf5.

The elapsed seconds in the current week can be calculated using the modulo operator.

In totalAssets() , the timeElapsed variable can be simplified as block.timestamp % 7 days .

Gas savings.

- uint timeElapsed = block.timestamp - (week * 7 days);

+ uint timeElapsed = block.timestamp % 7 days;

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Gas - Week elapsed t ime calculat ion can be simplified

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

https://github.com/InverseFinance/dola-savings/blob/488e05f99ded1b4a37cbf77b48487b55f7658906/src/sDolaHelper.sol#L29-L36
https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDolaHelper.sol#L29
https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDolaHelper.sol#L38
https://github.com/InverseFinance/dola-savings/blob/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L54

Addressed in https://github.com/InverseFinance/dola-

savings/pull/3/commits/45c4d9ff98df5c97952d72af87ab842aaa37c01e.

There is one missing limit in setMaxRewardPerDolaMantissa() , and this could lead to unexpected

scenarios.

81 | function setMaxRewardPerDolaMantissa(uint _max) public onlyGov

updateIndex(msg.sender) {

82 | maxRewardPerDolaMantissa = _max;

83 | }

DolaSavings.sol#L81

Informational.

Consider adding a max limit check.

Addressed in https://github.com/InverseFinance/dola-

savings/pull/7/commits/707358b957cf 142e896140beb59878f4e999bdc7.

It is recommended to emit events when updating state variables.

The following functions are missing event emission:

DolaSavings.sol#70 DolaSavings.sol#71 DolaSavings.sol#73 DolaSavings.sol#81

DolaSavings.sol#85 Dola.sol#L81 Dola.sol#L81100

D e v e l o p e r R e s p o n s e

Informational Findings

1. Informat ional - Missing limits when setting max amounts

T e c h n i c a l D e t a i l s

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

2. Informat ional - Missing event for a crit ical parameter change

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L81
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L70
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/srcDolaSavings.sol#L71
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/srcDolaSavings.sol#L73
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L81
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L85
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L81
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L100

Informational.

Add events to log the state variable changes.

Partially addressed in https://github.com/InverseFinance/dola-

savings/pull/7/commits/46afe0b1350346fc8001bb43da441de1cfb5d70c.

Using external visibility is recommended for clarity.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

3. Informat ional - public funct ions not called by the contract should be

declared external instead

70 | function setOperator(address _operator) public onlyGov { operator = _operator; }

71 | function setGov(address _gov) public onlyGov { gov = _gov; }

73 | function setMaxYearlyRewardBudget(uint _max) public onlyGov updateIndex(msg.sender)

{

81 | function setMaxRewardPerDolaMantissa(uint _max) public onlyGov

updateIndex(msg.sender) {

85 | function setYearlyRewardBudget(uint _yearlyRewardBudget) public onlyOperator

updateIndex(msg.sender) {

90 | function stake(uint amount, address recipient) public updateIndex(recipient) {

96 | function unstake(uint amount) public updateIndex(msg.sender) {

102 | function claimable(address user) public view returns(uint) {

114 | function claim(address to) public updateIndex(msg.sender) {

119 | function sweep(address token, uint amount, address to) public onlyGov {

DolaSavings.sol#L70 DolaSavings.sol#L71 DolaSavings.sol#L73 DolaSavings.sol#L81

DolaSavings.sol#L85 DolaSavings.sol#L90 DolaSavings.sol#L96 DolaSavings.sol#L102

DolaSavings.sol#L114 DolaSavings.sol#L119

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L70
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L71
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L73
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L81
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L85
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L90
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L96
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L102
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L114
https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/DolaSavings.sol#L119

Informational.

Change the function visibility.

Addressed in https://github.com/InverseFinance/dola-

savings/pull/7/commits/ade8b1d034e9b354dbb647d8d5bc54e1c60728c7.

By eliminating the else block and directly returning the values from the if -block, one level of

nesting can be removed:

64 | if(timeElapsed > duration) {

65 | return targetK;

66 | } else {

67 | uint targetWeight = timeElapsed;

68 | uint prevWeight = duration - timeElapsed;

69 | return (prevK * prevWeight + targetK * targetWeight) / duration;

70 | }

sDola.sol#L64

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

4. Informat ional - else block unnecessary

T e c h n i c a l D e t a i l s

https://github.com/InverseFinance/dola-savings/tree/5c38feed71ef71425ecd6b121574220e94ab8f8d/src/sDola.sol#L64

Informational.

Code can be replaced by:

64 | if(timeElapsed > duration) {

65 | return targetK;

66 | }

67 | uint targetWeight = timeElapsed;

68 | uint prevWeight = duration - timeElapsed;

69 | return (prevK * prevWeight + targetK * targetWeight) / duration;

Addressed in https://github.com/InverseFinance/dola-

savings/pull/7/commits/85938f54759d950a4f4db045ce3b143ffa971185.

The yAudit of Inverse Finance’s Dola Savings platform, conducted by adriro and pandadefi,

provided a thorough examination of its smart contracts. The audit, spanning three days,

uncovered a range of findings from high to low impact, alongside gas-saving and informational

insights. Crit ical vulnerabilit ies, such as the susceptibility of the sDola vault to inf lation attacks

and the potential manipulation of sDola in lending-borrowing markets, were promptly

addressed. Lower-impact issues, focusing on aspects like checks and function optimizations,

were also noted for improvement. The audit emphasizes the platform’s strong foundation in

smart contract development and its commitment to security, efficiency, and continuous

improvement.

Im p a c t

R e c o m m e n d a t i o n

D e v e l o p e r R e s p o n s e

Final remarks

