w SHERLOCK

Security Review For
Inverse Finance

Collaborative Audit Prepared For: Inverse Finance
Lead Security Expert(s): EgisSecurity

juan

Spearmint
Date Audited: October 13 - October 16, 2025

1


https://github.com/EgisSecurity
https://github.com/0xjuaan
https://github.com/0xspearmint

Introduction

Inverse Finance is the decentralized autonomous organization that develops and
manages the FiRM fixed rate lending protocol, DOLA, its debt-backed, decentralized
stablecoin, and sDOLA, the yield-bearing version of DOLA.

Scope
Repository: sherlock-scoping/InverseFinance__JuniorDola
Audited Commit: 2bae3fa7aeé6d88e808ef73baf73d305e0b67dd20
Final Commit: 4lafélea57de928cb3a706379282c3850a9c7136
Files:

 src/FiRMSlashingModule.sol

 src/jDola.sol

 src/LinearlnterpolationDelayModel.sol

e src/WithdrawalEscrow.sol

Final Commit Hash
41aféleab57de928cb3a706379282¢3850a9¢c7136

Findings
Each issue has an assigned severity:

« High issues are directly exploitable security vulnerabilities that need to be fixed.

« Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

» Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.


https://github.com/sherlock-scoping/InverseFinance__JuniorDola/tree/41af61ea57de928cb3a706379282c3850a9c7136

Issues Found

High Medium

1 1

Issues Not Fixed and Not Acknowledged

High Medium

0] 0]

Low/Info

3

Low/Info

0



Issue H-1: Anyone can steal all jDola from Withdraw
alEscrow [RESOLVED]

Source: https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/5

Summary

The withdraw escrow trusts any vault address passed to queueWithdrawal and treats it as
an ERC4626 without validating it is a known/benign implementation.

Vulnerability Detail

When withdrawFeeBps > 0, the escrow executes a fee flow that:

1. calls _vault.redeem(fee, address(this), address(this)) on the untrusted vault
and uses the returned value as amount to a ERC20. approve call

2. reads vault.asset() (also controlled by the untrusted vault),
3. approves the amount from 1. returned token to the untrusted vault for dolaRedeemed
Because the escrow:
» does not whitelist vaults,
« does not bind a vault to a pre-verified asset,

« uses an approve-then-pull pattern to an untrusted contract right after external
calls, the attacker can drain escrow-held tokens (e.g., user shares waiting to
withdraw) in a single call when fees are enabled.

PoC https://gist.github.com/NicolaMirchev/635376aafae7e1205d4flbéba542d139

Impact

Theft of all jDola tokens in withdrawEscrow

Code Snippet

https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b7945118
1409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.s
ol#L101-L103

Tool Used

Manual Review


https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/5
https://gist.github.com/NicolaMirchev/635376aafae7e1205d4f1b6ba542d139
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L101-L103
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L101-L103
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L101-L103

Recommendation

Implement a vault whitelisting



Issue M-1: queueWithdrawal redeem won't work with
amount = 0Oandblock.timestamp <= exitWindowSta

rt [RESOLVED]

Source: https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/é

Summary

queueWithdrawal redeem won't work with amount = 0 and block.timestamp <= exitWindow
Start

Vulnerability Detail

Users can renew their withdrawals by calling queueWithdrawal with amount = 0, this
coment states this

//To renew a withdrawal, queue a O amount withdrawal
function queueWithdrawal (address vault, uint amount) external nonReentrant {

The issue is that if withdrawFeeBps > 0 then a fee will be applied.

if (withdrawFeeBps > 0){
//1f user has had a chance to withdraw, we apply full fee, otherwise
— only apply fee on new amount
fee = totalWithdrawAmount > amount && block.timestamp > exitWindowStart 7
totalWithdrawAmount * withdrawFeeBps / 10000 :
amount * withdrawFeeBps / 10000;
totalWithdrawAmount -= fee;

If a user is trying to renew his withdraw, then totalWithdrawAmount > amount will always
be true, since he already has a queued withdraw and block.timestamp > exitWindowStar
t in this case will be false, he is trying to renew his window prior to his window's start.

In this the fee is applied to amount, since amount = 0 no fee is applied.

The issue is when fee is attempted to be redeemed.

if (withdrawFeeBps > 0){
//@lead can potentially ‘reedem” O here, which will fail
uint dolaRedeemed = vault.redeem(fee, address(this), address(this));
_vault.asset () .approve(vault, dolaRedeemed) ;
_vault.donate(dolaRedeemed) ;


https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/6

Redeeming O is impossible, because of how redeem works.

function redeem(

uint256 shares,

address receiver,

address owner

) public virtual returns (uint256 assets) {

if (msg.sender != owner) {
uint256 allowed = allowance[owner] [msg.sender]; // Saves gas for
— limited approvals.

if (allowed != type(uint256).max) allowance[owner] [msg.sender] =
— allowed - shares;

// Check for rounding error since we round down in previewRedeem.
require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");

previewRedeem does the following

function convertToAssets(uint256 shares) public view virtual returns (uint256) {
uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is
< non-zero.

return supply == O ? shares : shares.mulDivDown(totalAssets(), supply);

0 multiplied by something then divided by something is always O, so previewRedeem
returns O and the tx reverts. This punishes users, as they can't renew their window prior to
their current window's start, thus they are always forced to pay a fee for the second time,
it also breaks the invariant of letting users renew their window whenever possible.

Impact

Renewing queue withdrawals doesn't work as intented

Code Snippet

https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b7945118
1409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.s
ol#L99-L103

Tool Used

Manual Review


https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L99-L103
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L99-L103
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L99-L103

Recommendation
Change the fee redemption to the following

if (withdrawFeeBps > 0 && fee > 0){
uint dolaRedeemed = _vault.redeem(fee, address(this), address(this));

_vault.asset() .approve(vault, dolaRedeemed) ;
_vault.donate(dolaRedeemed) ;

Extra safe would be like so.

uint preview = _vault.previewRedeem(fee);
if (withdrawFeeBps > 0 && fee > 0 && preview > 0) { ... }

This way any possible to O rounding will also be handled and will allow users to queue.



Issue L-1: Broken invariant totalAssets() < MIN_AS
SETS in jDola: :slash [RESOLVED]

Source: https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/7

Summary
Basically the invariant will not hold if everything is slashed (first if branch):

function slash(uint amount) external onlySlashingModule() returns(uint) {

//Make sure slashed amount doesn't exceed total supply

//TODO: Add logic to handle still accruing revenue

if (totalAssets() < amount){
amount = totalAssets(); // @sus this may result in breaking the invariant
< “totalAssets() < MIN_ASSETS"

//Make sure slashed amount doesn't leave junior tranche with less assets than

— MIN_ASSETS

//TOD0: Consider allowing O assets

+

And then prev week revenue is accumulated such that the amount is < MIN_ASSETS:

function totalAssets() public view override returns (uint) { // @ok
uint week = block.timestamp / 7 days;
uint timeElapsed = block.timestamp % 7 days;
uint remaininglastRevenue = weeklyRevenue[week - 1] * (7 days - timeElapsed) /
— 7 days;
uint actualAssets = asset.balanceOf (address(this)) - remaininglLastRevenue -

— weeklyRevenue [week] ;
return actualAssets < MAX ASSETS 7 actualAssets : MAX_ASSETS;

It is also reachable if we shash eveything (we don't enter if, if else)and then totalAsse
ts increases just below the MIN_ASSETS because of the prev weekly distribution

Impact

Having totalAssets() > 0 && totalAssets() < MIN_ASSETS

Code Snippet

https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b7945118
1409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/jDola.sol#L176-L186



https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/7
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/jDola.sol#L176-L186
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/jDola.sol#L176-L186

Tool Used

Manual Review

Recommendation

Ensure that the invariant holds. If weeklyRevenue [last week] >= 1d18, distribute the
amount of 1e18 instantly and withdraw it from weeklyRevenue [last week], if we are
slashing all the assets

Discussion

08xmt

Decided it's safer to make MIN_ASSETS + remaining revenue unslashable. In any given
week this is unlikely to be an impactful amount.

10



Issue L-2: Lack of setOperator function in the jDola
contract [RESOLVED]

Source: https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/8

Summary

The jDola contract does not have a function to change the operator address after
deployment.

As a result the operator's address can never be updated post deployment, even in
emergency scenarios (for example if the operator turns malicious)

Recommendation

Consider adding a setOperator (address _operator) function with the onlyGov modifier
to allow governance to update the operator role.

1


https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/8

Issue L-3: Users cannot specify a maximum withdraw
delay when withdrawing [RESOLVED]

Source: https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/9?

Summary

The WithdrawalEscrow contract determines each user's withdrawal delay dynamically
through the withdrawDelayModel, without allowing users to specify their own maximum
acceptable delay.

Vulnerability Detail

When multiple users queue withdrawals at the same time, those whose transactions are
processed later may receive unexpectedly significantly longer withdrawal delays than
the earlier users. Since the contract does not allow users to set a maximum acceptable
delay, their transactions will still execute even if the resulting lockup period becomes
unexpectedly long.

Impact

Under specific conditions (high withdrawal activity in a short period of time), some users
may face unexpectedly long lockups

Code Snippet

https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b7945118
1409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.s
ol#L6é5

Tool Used

Manual Review

Recommendation

Consider adding a parameter that allows users to specify a maximum acceptable
withdrawal delay, and revert the transaction if the calculated delay exceeds this limit.

12


https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/issues/9
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L65
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L65
https://github.com/sherlock-audit/2025-10-inverse-finance-oct-13th/blob/dd8b79451181409793a3f85da0a75d37dff7598d/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L65

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

13



	Introduction
	Scope
	Final Commit Hash

	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged


	Issue H-1: Anyone can steal all jDola from WithdrawalEscrow [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue M-1: queueWithdrawal redeem won't work with amount = 0 and block.timestamp <= exitWindowStart [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-1: Broken invariant totalAssets() < MIN_ASSETS in jDola::slash [RESOLVED]
	Summary
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-2: Lack of setOperator function in the jDola contract [RESOLVED]
	Summary
	Recommendation

	Issue L-3: Users cannot specify a maximum withdraw delay when withdrawing [RESOLVED]
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Disclaimers

