w SHERLOCK

Security Review For
Inverse Finance

Public Audit Contest Prepared For: Inverse Finance
Lead Security Expert: 000000
Date Audited: November 10 - November 14, 2025

1

Introduction

Inverse Finance is the DAO that develops and manages the FiRM fixed-rate lending
protocol, and DOLA, its debt-backed, decentralized stablecoin. This contest audits the
Junior Tranche insurance mechanism where depositors earn yield while serving as a
buffer against bad debt, with particular focus on ERC-4626 accounting under slashing
events, withdrawal escrow mechanics, and automated debt repayment logic.

Scope

Repository: sherlock-scoping/InverseFinance__JuniorDola
Audited Commit: 3e5a39251fe?2abaa306657c62fPb45ceéclb234
Final Commit: e85ac217d9019ccb3573401b56bbéaa44céfad719

Files:

src/FiRMSlashingModule.sol

src/jDola.sol

 src/LinearinterpolationDelayModel.sol

src/WithdrawalEscrow.sol

Final Commit Hash
e85ac217d9019ccb3573401b56béaa44céfad719

Findings
Each issue has an assigned severity:

« High issues are directly exploitable security vulnerabilities that need to be fixed.

e Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

Issues Found

High Medium

0 2

Issues Not Fixed and Not Acknowledged

High Medium

0 0]

Security experts who found valid issues

000000 DevBear0411 jayjoshix
0x23r0 EV_om klaus
OxAlipede JeRRy0422 maigadoh
OxAlix2 JohnTPark24 mladenov
OxBoraichoT KaplanLabs newspacexyz
OxcOffEE MaratCerby nodesemesta
Oxeix Olugbenga-ayo shaflowO1
Oxheartcode OxSath404 silver_eth
Oxpetern Pataroff tobiOx18

Oxsh VCeb touristS
Oxvibh4 alOx23 typicalHuman
7 algiz v_2110
A_Failures_True_Power bbl4de vangrim
Artur dandan vinica_boy
Bobaqi23 deucefury v4y
CasinoCompiler future yovchev_yoan
Colin greekfreakxyz

Issue M-1: ERC4626 maxDeposit() Violates Standard
by Not Enforcing Actual Deposit Limits

Source: https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche-judgi
ng/issues/20

Found by

000000, 0x23r0, OxAlipede, OxBoraichoT, OxcOffEE, Oxeix, Oxheartcode, Oxpetern, Oxsh,
A_Failures_True_Power, Artur, Bobai23, CasinoCompiler, Colin, DevBear0411, EV_om,
JeRRy0422, JohnTPark24, KaplanLabs, Olugbenga-ayo, Pataroff, VCeb, al0x23, algiz,
bbl4de, dandan, future, greekfreakxyz, jayjoshix, maigadoh, mladenov, newspacexyz,
nodesemesta, shaflowO0l, silver_eth, tobiOx18, touristS, typicalHuman, v_2110, vangrim,
vinica_boy, y4y, yovchev_yoan

Summary

The jDola contract violates ERC-4626's "MUST"” requirement for maxDeposit () by returning
type (uint256) .max instead of the actual maximum that can be deposited without revert.
The contract has multiple deposit limits (MIN_SHARES, MAX_ASSETS, MAX_SHARES) that
are not reflected in maxDeposit (), causing potential integration failures.

https://eips.ethereum.org/EIPS/eip-4626

Vulnerability Detail
According to ERC-4626, maxDeposit () has specific requirements:

MUST return the maximum amount of assets deposit would allow to be deposited for
receiver and not cause arevert, which MUST NOT be higher than the actual maximum
that would be accepted

However, jDola inherits Solmate's default implementation: https://github.com/transmiss
ionsll/solmate/blob/main/src/tokens/ERC4626.so0l#L160-L162

function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max; // Always returns unlimited

}

But jDola enforces multiple limits in afterDeposit ():

https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche/blob/main/I
nverseFinance__JuniorDola/src/jDola.sol#L96-L100

function afterDeposit(uint256, uint256) internal override {

require(totalSupply >= MIN_SHARES, "Shares below MIN_SHARES"); // 1el8
— minimum

require(totalSupply <= MAX_SHARES, "Shares above MAX_SHARES"); //

— 27128-1 maximum

require(totalAssets() >= MIN_ASSETS, "Assets below MIN_ASSETS"); // 1el8

< minimum

ERC-4626 Violation Examples:

1. MAX_SHARES Limit: If totalSupply = 2128 - 1000, maxDeposit () returns unlimited
but any deposit would revert

2. MAX_ASSETS Limit: totalAssets () calculation caps at MAX_ASSETS = 1e32, but this
isn't reflected

Impact

Breaks core EIP-4626 functionality requirements and explicit violation of "MUST”
requirement

Tool used

Manual Review

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/InverseFinance/JuniorDola/pull/11

Issue M-2: Off-by-one error in exit window check al-
lows users to avoid the withdrawal fee

Source: https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche-judgi
ng/issues/318

Found by

000000, OxAlipede, 0xAlix2, Oxvibh4, 7, Colin, MaratCerby, OxSath404, deucefury, klaus,
maigadoh, silver_eth

Summary

A boundary check in WithdrawalEscrow.queueWithdrawal allows a user to avoid the
intended full withdrawal fee by renewing exactly at the start of their exit window.
Because the code checks block.timestamp > exitWindowStart (strict) instead of block.ti
mestamp >= exitWindowStart, a renewal at the exact start timestamp charges the fee
only on the newly queued amount, instead of the whole withdrawal amount.

Root Cause

In queueWithdrawal https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tr
anche/blob/main/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L91-L97:

if (withdrawFeeBps > 0){
//1f user has had a chance to withdraw, we apply full fee, otherwise only apply
— fee on new amount
fee = totalWithdrawAmount > amount && block.timestamp > exitWindowStart 7
totalWithdrawAmount * withdrawFeeBps / 10000 :
amount * withdrawFeeBps / 10000;
totalWithdrawAmount -= fee;

At equality (block.timestamp == exitWindowStart), the “full-fee” branch is not taken.

Internal Pre-conditions

l. withdrawFeeBps > O.

2. Caller already has a queued withdrawal (withdrawAmounts [msg.sender] > 0and a
nonzero exitWindows [msg.sender] . start).

External Pre-conditions

None.

Attack Path

1. User queues an initial withdrawal A and receives a window [start = S, end].
2. Att = S, call queueWithdrawal (0, maxWithdrawDelay) to renew.

3. Because block.timestamp > Sis false att = S, the fee is applied to amount (0)
instead of totalWithdrawAmount, resulting in zero fee.

4. A new later window is set while the outstanding amount remains intact and
uncharged. Repeat as needed.

Note that the amount in the above attack path example does not need to be O; it can also
be non-zero. Following the above attack path, fees are only charged on the new amount.

Though "likelihood is not considered when identifying the severity and the validity of the
report” as per Sherlock rules, it's still worth mentioning that likelihood can be increased
by some methods:

« The renew call can be reliably targeted with a guard (e.g., a contract requiring block
.timestamp == S and reverting otherwise), so an inclusion with the wrong
timestamp reverts and does not accidentally trigger the full-fee branch.

« The start timestamp S is also predictable and targets the timestamp boundary on
PoS Ethereum, which uses fixed 12Xsecond slots.

Impact

« The intended withdrawal fee on the full outstanding amount is not collected,
reducing the donation to the vault and harming remaining shareholders’ yield.

« The attack can be repeated for each new withdrawal window to continuously avoid
fees.

A concrete example:
 withdrawFeeBps = 100 (1%), vault TVL X $10,000,000.

 User already has withdrawAmounts = 5,000,000 shares at $1/share (/1 $5,000,000
assets), which was initialized previously.

« User renews withdrawal with an additional 0 amount at the start timestamp of the
withdrawal window.

 Intended fee in the renewal: 5,000,000 x 1% = 50,000 shares X $50,000 donated to
the vault.

 Actual fee charged is $0, so the remaining stakers lose 1 $50,000 in expected
feellderived yield (which is a 100% loss of the intended fee on this renewal).

7

PoC

No response

Mitigation

Replace block.timestamp > exitWindowStart with block.timestamp >= exitWindowStart.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/InverseFinance/JuniorDola/pull/11

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

