
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Inverse Finance

Public Audit Contest Prepared For: Inverse Finance
Lead Security Expert: 000000
Date Audited: November 10 - November 14, 2025

1

Introduction
Inverse Finance is the DAO that develops and manages the FiRM fixed-rate lending
protocol, and DOLA, its debt-backed, decentralized stablecoin. This contest audits the
Junior Tranche insurance mechanism where depositors earn yield while serving as a
buffer against bad debt, with particular focus on ERC-4626 accounting under slashing
events, withdrawal escrow mechanics, and automated debt repayment logic.

Scope
Repository: sherlock-scoping/InverseFinance__JuniorDola

Audited Commit: 3e5a39251fe92abaa306657c62f9b45ce6c1b234

Final Commit: e85ac217d9019ccb3573401b56b6aa44c6fad719

Files:

• src/FiRMSlashingModule.sol

• src/jDola.sol

• src/LinearInterpolationDelayModel.sol

• src/WithdrawalEscrow.sol

Final Commit Hash
e85ac217d9019ccb3573401b56b6aa44c6fad719

Findings
Each issue has an assigned severity:

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

Issues Found

High Medium

0 2

2

Issues Not Fixed and Not Acknowledged

High Medium

0 0

Security experts who found valid issues
000000
0x23r0
0xAlipede
0xAlix2
0xBoraichoT
0xc0ffEE
0xeix
0xheartcode
0xpetern
0xsh
0xv1bh4
7
A_Failures_True_Power
Artur
Bobai23
CasinoCompiler
Colin

DevBear0411
EV_om
JeRRy0422
JohnTPark24
KaplanLabs
MaratCerby
Olugbenga-ayo
OxSath404
Pataroff
VCeb
al0x23
algiz
bbl4de
dandan
deucefury
future
greekfreakxyz

jayjoshix
klaus
maigadoh
mladenov
newspacexyz
nodesemesta
shaflow01
silver_eth
tobi0x18
touristS
typicalHuman
v_2110
vangrim
vinica_boy
y4y
yovchev_yoan

3

IssueM-1: ERC4626maxDeposit()ViolatesStandard
by Not Enforcing Actual Deposit Limits
Source: https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche-judgi
ng/issues/20

Found by
000000, 0x23r0, 0xAlipede, 0xBoraichoT, 0xc0ffEE, 0xeix, 0xheartcode, 0xpetern, 0xsh,
A_Failures_True_Power, Artur, Bobai23, CasinoCompiler, Colin, DevBear0411, EV_om,
JeRRy0422, JohnTPark24, KaplanLabs, Olugbenga-ayo, Pataroff, VCeb, al0x23, algiz,
bbl4de, dandan, future, greekfreakxyz, jayjoshix, maigadoh, mladenov, newspacexyz,
nodesemesta, shaflow01, silver_eth, tobi0x18, touristS, typicalHuman, v_2110, vangrim,
vinica_boy, y4y, yovchev_yoan

Summary
The jDola contract violates ERC-4626's ”MUST” requirement for maxDeposit() by returning
type(uint256).max instead of the actual maximum that can be deposited without revert.
The contract has multiple deposit limits (MIN_SHARES, MAX_ASSETS, MAX_SHARES) that
are not reflected in maxDeposit(), causing potential integration failures.

https://eips.ethereum.org/EIPS/eip-4626

Vulnerability Detail
According to ERC-4626, maxDeposit() has specific requirements:

MUST return themaximumamount of assets deposit would allow to be deposited for
receiverandnotcausea revert,whichMUSTNOTbehigher thantheactualmaximum
that would be accepted

However, jDola inherits Solmate's default implementation: https://github.com/transmiss
ions11/solmate/blob/main/src/tokens/ERC4626.sol#L160-L162

function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max; // Always returns unlimited

}

But jDola enforces multiple limits in afterDeposit():

https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche/blob/main/I
nverseFinance__JuniorDola/src/jDola.sol#L96-L100

4

function afterDeposit(uint256, uint256) internal override {
require(totalSupply >= MIN_SHARES, "Shares below MIN_SHARES"); // 1e18

minimum↪→

require(totalSupply <= MAX_SHARES, "Shares above MAX_SHARES"); //
2^128-1 maximum↪→

require(totalAssets() >= MIN_ASSETS, "Assets below MIN_ASSETS"); // 1e18
minimum↪→

}

ERC-4626 Violation Examples:
1. MAX_SHARES Limit: If totalSupply = 2̂128 - 1000, maxDeposit() returns unlimited
but any deposit would revert

2. MAX_ASSETS Limit: totalAssets() calculation caps at MAX_ASSETS = 1e32, but this
isn't reflected

Impact
Breaks core EIP-4626 functionality requirements and explicit violation of ”MUST”
requirement

Tool used
Manual Review

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/InverseFinance/JuniorDola/pull/11

5

IssueM-2: Off-by-one error in exit window check al-
lows users to avoid the withdrawal fee
Source: https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tranche-judgi
ng/issues/318

Found by
000000, 0xAlipede, 0xAlix2, 0xv1bh4, 7, Colin, MaratCerby, OxSath404, deucefury, klaus,
maigadoh, silver_eth

Summary
A boundary check in WithdrawalEscrow.queueWithdrawal allows a user to avoid the
intended full withdrawal fee by renewing exactly at the start of their exit window.
Because the code checks block.timestamp > exitWindowStart (strict) instead of block.ti
mestamp >= exitWindowStart, a renewal at the exact start timestamp charges the fee
only on the newly queued amount, instead of the whole withdrawal amount.

Root Cause
In queueWithdrawal https://github.com/sherlock-audit/2025-11-inverse-finance-junior-tr
anche/blob/main/InverseFinance__JuniorDola/src/WithdrawalEscrow.sol#L91-L97:

if(withdrawFeeBps > 0){
//If user has had a chance to withdraw, we apply full fee, otherwise only apply

fee on new amount↪→

fee = totalWithdrawAmount > amount && block.timestamp > exitWindowStart ?
totalWithdrawAmount * withdrawFeeBps / 10000 :
amount * withdrawFeeBps / 10000;

totalWithdrawAmount -= fee;
}

At equality (block.timestamp == exitWindowStart), the “full-fee” branch is not taken.

Internal Pre-conditions
1. withdrawFeeBps > 0.

2. Caller already has a queued withdrawal (withdrawAmounts[msg.sender] > 0 and a
nonzero exitWindows[msg.sender].start).

6

External Pre-conditions
None.

Attack Path
1. User queues an initial withdrawal A and receives a window [start = S, end].

2. At t = S, call queueWithdrawal(0, maxWithdrawDelay) to renew.

3. Because block.timestamp > S is false at t = S, the fee is applied to amount (0)
instead of totalWithdrawAmount, resulting in zero fee.

4. A new later window is set while the outstanding amount remains intact and
uncharged. Repeat as needed.

Note that the amount in the above attack path example does not need to be 0; it can also
be non-zero. Following the above attack path, fees are only charged on the new amount.

Though ”likelihood is not considered when identifying the severity and the validity of the
report” as per Sherlock rules, it's still worth mentioning that likelihood can be increased
by some methods:

• The renew call can be reliably targeted with a guard (e.g., a contract requiring block
.timestamp == S and reverting otherwise), so an inclusion with the wrong
timestamp reverts and does not accidentally trigger the full-fee branch.

• The start timestamp S is also predictable and targets the timestamp boundary on
PoS Ethereum, which uses fixed 12�second slots.

Impact
• The intended withdrawal fee on the full outstanding amount is not collected,
reducing the donation to the vault and harming remaining shareholders’ yield.

• The attack can be repeated for each new withdrawal window to continuously avoid
fees.

A concrete example:

• withdrawFeeBps = 100 (1%), vault TVL � $10,000,000.

• User already has withdrawAmounts = 5,000,000 shares at $1/share (� $5,000,000
assets), which was initialized previously.

• User renews withdrawal with an additional 0 amount at the start timestamp of the
withdrawal window.

• Intended fee in the renewal: 5,000,000 × 1% = 50,000 shares � $50,000 donated to
the vault.

• Actual fee charged is $0, so the remaining stakers lose � $50,000 in expected
fee�derived yield (which is a 100% loss of the intended fee on this renewal).

7

PoC
No response

Mitigation
Replace block.timestamp > exitWindowStart with block.timestamp >= exitWindowStart.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/InverseFinance/JuniorDola/pull/11

8

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

9

