
Inverse Finance FiRM Audit

We reviewed the https://github.com/InverseFinance/FiRM repository at commit c1274c8.

The review started on Monday, April 17, 2023.

This report was updated on Thursday, May 11, 2023.

Introduction

We have conducted an audit of the FiRM protocol, developed by Inverse Finance, with

the objective of providing an independent assessment of the project's smart contracts'

security, code quality, and overall functionality. The FiRM protocol is a decentralized

finance (DeFi) protocol that enables users to access fixed-rate loans, using a variety of

assets as collateral.

The protocol is built around the concept of Markets, which allow users to deposit

collateral and borrow DOLA, a stablecoin pegged to the US dollar. Each Market supports

a specific type of collateral, with asset prices primarily sourced from Chainlink price

feeds. For every Market, the protocol creates a unique escrow contract for each user,

enabling them to participate in on-chain governance and other protocol interactions

even when their tokens are deposited as collateral in FiRM.

Overall, the codebase is well-documented and easy to comprehend. However, there are

several instances where additional safety measures could be implemented to enhance

the code's resilience. Many best practices are not employed, such as adhering to the

checks-effects-interactions pattern, using reentrancy guards, or utilizing "safe" token

function calls. As a result, a significant amount of responsibility is delegated to the

governance process, relying on the governance review of proposals to prevent the

addition of new markets and escrows that could introduce avoidable vulnerabilities.

file:///Users/gsanchezv/code/github.com/gnkz/nomoi/inverse-firm-audit/assets/logo.svg
https://github.com/InverseFinance/FiRM
https://github.com/InverseFinance/FiRM/commit/c1274c8


It's important to mention that a significant portion of this code has previously undergone

a Code4rena audit contest, resulting in a few overlapping findings. We have only

included select overlapping findings in our report after reviewing the team's responses

during the contest and determining that certain issues still warrant attention and

resolution.

The main recommendations provided in this report aim to enhance the protocol's

security by preventing issues that arise from unexpected reentrancies and adopting a

more secure approach when handling external protocol integrations.

Findings

1. ConvexCurveEscrow  enables a potential reentrancy

IMPACTIMPACT HIGHHIGH LIKELIHOODLIKELIHOOD MEDIUMMEDIUM

The ConvexCurveEscrow.pay  function calls CvxCrvStakingWrapper.withdraw , which
leaves the system open to a reentrancy that allows a user to fully withdraw their

collateral even if they have an open debt position. This happens due to the external calls

performed by the staking wrapper:

1. Attacker deposits some collateral.

2. Attacker borrows some DOLA.

3. Attacker calls the Market.withdraw  function to withdraw part of her collateral.

4. The Market  will use the ConvexCurveEscrow.balance  function to compute the

withdrawal limit, and then call the ConvexCurveEscrow.pay  function to transfer

tokens to the user.

5. The ConvexCurveEscrow  contract will then call the
CvxCrvStakingWrapper.getReward  function.

6. The CvxCrvStakingWrapper  contract will call: a. The getReward  function of the
CvxCrvStaking  contract, which will in turn call the getReward  function of all the
extraRewards  contracts. b. The onRewardClaim  function of the rewardHook  (if

defined)

7. If any of these calls reach an attacker controlled contract, the attacker can reenter

the Market.withdraw  function, which will use the same withdrawal limit as step 4,

as the escrow's balance has not been updated yet.

https://camo.githubusercontent.com/759a542d896def095025265e8edddd6084c2727cf2a7c8e46b96453283f671b2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d484947482d7265642e737667
https://camo.githubusercontent.com/cf972398d8de2050c8c5cd4c4e212213dfa57227f9410acc187d6e4093b4936f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4d454449554d2d6f72616e67652e737667
https://etherscan.io/address/0xaa0C3f5F7DFD688C6E646F66CD2a6B66ACdbE434#code
https://etherscan.io/address/0x3Fe65692bfCD0e6CF84cB1E7d24108E434A7587e#code


Even though we didn't find a direct way to exploit this issue with Convex's current

configuration, this could change if a new reward contract is added or a reward hook is

enabled. We consider this issue to be of medium likelihood as the Inverse Finance team

has no control over the reward contracts or the reward hook in Convex's staking

wrapper.

Note: Related to the issue "ERC777 reentrancy when withdrawing can be used to

withdraw all collateral" reported by Code4rena.

Recommendation

Consider using reentrancy guards for all Market functions that perform external calls.

Alternatively, for the specific case of ConvexCurveEscrow  it is possible to use

reentrancy guards for all functions that perform external calls such as pay  and
onDeposit .

Update: As of commit 2ff3c03 , this issue has been resolved by locally storing and

updating the staked balance before any calls that could result in a reentrancy.

2. Market.withdraw  reentrancy can be used to withdraw more
collateral than allowed

IMPACTIMPACT HIGHHIGH LIKELIHOODLIKELIHOOD LOWLOW

The Market.withdraw  function is susceptible to potential reentrancy through external

calls that might be present in the escrow's pay function. This vulnerability could be

exploited to withdraw a user's entire collateral, even if they have an open borrow

position, by executing a second withdrawal before the amount used to calculate the

withdrawal limit is updated. This issue is a generalized version of the

"ConvexCurveEscrow enables a potential reentrancy" finding mentioned earlier.

Note: This issue is related to the "ERC777 reentrancy when withdrawing can be used to

withdraw all collateral" reported by Code4rena. We chose to include this overlapping

issue in our report because we believe its scope is broader than previously identified: it

not only involves token standards with callbacks but also any token or escrow integration

that execute external calls or have upgradeable components. Additionally, we disagree

with the team's comment justifying this behavior due to only accepting ERC20 compliant

tokens, as the ERC20 specification does not prohibit tokens from performing external

calls or having upgradeable components.

Recommendation

https://github.com/code-423n4/2022-10-inverse-findings/issues/206
https://github.com/InverseFinance/FiRM/commit/2ff3c03605a91b36203c44e8bc0da5efdc3e0b5a
https://camo.githubusercontent.com/759a542d896def095025265e8edddd6084c2727cf2a7c8e46b96453283f671b2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d484947482d7265642e737667
https://camo.githubusercontent.com/ed8890b078f0261381024629b3e04393633da489cb7edc1b13ae54c787dd2444/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4c4f572d79656c6c6f772e737667
https://github.com/code-423n4/2022-10-inverse-findings/issues/206
https://github.com/code-423n4/2022-10-inverse-findings/issues/206#issuecomment-1313354099


Consider using reentrancy guards in all functions that perform external calls to contracts

that are not controlled by Inverse Finance.

3. Potential reentrancy in INVEscrow

IMPACTIMPACT HIGHHIGH LIKELIHOODLIKELIHOOD LOWLOW

A reentrancy issue, similar to the one enabled by ConvexCurveEscrow  but much less

likely, is present in the INVEscrow  contract.

Before transferring the escrow tokens in the INVEscrow.pay  function, the
xINV.redeemUnderlying  function is called. This external call eventually reaches the
xINV 's comptroller  contract, which has upgradeable components. In theory, some

external call to an attacker controlled contract could be unintentionally introduced in the

future, leading to vulnerabilities such as reentering the Market.withdraw  function to

withdraw more collateral.

Recommendation

Consider using reentrancy guards for all Market  functions that perform external calls.

Alternatively, for the specific case of INVEscrow  it is possible to use reentrancy guards

for all functions that perform external calls.

Update: As of commit ddefe1d , this issue has been resolved by by locally storing and

updating the staked balance before any calls that could result in a reentrancy.

4. Stale chainlink answers are accepted

IMPACTIMPACT HIGHHIGH LIKELIHOODLIKELIHOOD LOWLOW

The Oracle.getFeedPrice  function only checks that the returned price is greater than

zero. However, there are no checks to prevent using stale prices, which could happen

due to issues with Chainlink, or if the price reaches the minimum price configured for

that specific feed.

This was also reported by Code4rena and marked as fixed, but only the greater than zero

check was implemented.

Recommendation

Consider always checking if the price returned by the Chainlink feed is recent enough.

https://camo.githubusercontent.com/759a542d896def095025265e8edddd6084c2727cf2a7c8e46b96453283f671b2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d484947482d7265642e737667
https://camo.githubusercontent.com/ed8890b078f0261381024629b3e04393633da489cb7edc1b13ae54c787dd2444/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4c4f572d79656c6c6f772e737667
https://github.com/InverseFinance/FiRM/pull/45/commits/ddefe1dc5a61a4a223fa7201dc7ba7e6ec953b34
https://camo.githubusercontent.com/759a542d896def095025265e8edddd6084c2727cf2a7c8e46b96453283f671b2/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d484947482d7265642e737667
https://camo.githubusercontent.com/ed8890b078f0261381024629b3e04393633da489cb7edc1b13ae54c787dd2444/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4c4f572d79656c6c6f772e737667
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/Oracle.sol#L158-L162
https://github.com/code-423n4/2022-10-inverse-findings/issues/584


Update: As of commit e28dae4 , this issue has been resolved by introducing a check in

the BorrowController  which disables borrowing if the feed has't updated the price

within the configured threshold.

5. onlyINVEscrow  restrictions are too loose

IMPACTIMPACT MEDIUMMEDIUM LIKELIHOODLIKELIHOOD LOWLOW

The DbrDistributor.onlyINVEscrow  modifier is intended to grant access exclusively to

escrows of specific markets, such as the INVEscrow . In order to achieve this, it checks
if the msg.sender  is a valid escrow by verifying that the associated market is registered

in the DBR  contract.

However, the current implementation fails to effectively limit access to specific markets,

and could result in escrows from unintended markets calling these functions. The impact

of this will completely depend on the escrow's implementation.

Recommendation

Consider keeping a local registry of the allowed markets in the DbrDistributor

contract, managed by its operator . This will prevent unintended calls from escrows of

other markets.

Update: As of commit ac71fff , this issue has been resolved by hardcoding the INV

address and checking that it is equal to the market's collateral address.

6. BorrowController.onRepay  is not called on liquidation

IMPACTIMPACT LOWLOW LIKELIHOODLIKELIHOOD LOWLOW

The Market.repay  function calls the DBR.repay  function and
BorrowController.repay  (if defined). On the other hand, the Market.liquidate

function only calls DBR.repay . This could lead to reaching the the BorrowController 's
daily limit even when loans have been repaid through liquidation.

Someone could also attempt to abuse this and DOS the borrowing functionality:

1. Monitor and wait for a transaction that increases the price of the collateral from the

perspective of the oracle being used by the market.

2. Before said transaction, deposit and borrow as much DOLA as possible, ideally close

to the daily borrow limit.

3. After the transaction, liquidate the position.

https://github.com/InverseFinance/FiRM/pull/42/commits/e28dae4823f95a8d69a9ad0dce3ff866bd8cc1d6
https://camo.githubusercontent.com/3284d5ba8e47350cf1853a78e3cf6f052f977ca0aadda2b36136f024481f1aed/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d4d454449554d2d6f72616e67652e737667
https://camo.githubusercontent.com/ed8890b078f0261381024629b3e04393633da489cb7edc1b13ae54c787dd2444/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4c4f572d79656c6c6f772e737667
https://github.com/InverseFinance/FiRM/pull/46/commits/ac71fff1ed8e45a67518660a96dad30c31c2da15
https://camo.githubusercontent.com/507c7a3fe23c415278f13995934da65319e13dd23152dc0efc70938df64c754d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f494d504143542d4c4f572d79656c6c6f772e737667
https://camo.githubusercontent.com/ed8890b078f0261381024629b3e04393633da489cb7edc1b13ae54c787dd2444/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4c494b454c49484f4f442d4c4f572d79656c6c6f772e737667


Note: this behavior is unlikely in practice because it would not be free for the attacker

and the amount of collateral needed for the deposit might be huge depending on the

daily borrow limit.

Recommendation

Consider calling BorrowController.repay  from Market.liquidate  the same way in

which it is called in the repay  function.

Update: As of commit 5f1f75a , this issue has been resolved by calling onRepay  in the
liquidate  function.

7. Typos

ENHANCEMENTENHANCEMENT

The codebase contains several typos. A few examples:

raio  on ConvexCurvePriceFeed .

addres  on BorrowController here and here.

Fed contact  on Fed .

8. Remove TODO comment

ENHANCEMENTENHANCEMENT

Remove the TODO comment in INVEscrow .

9. Naming issues

ENHANCEMENTENHANCEMENT

Rename onlyINVEscrow  to onlyEscrow , as it allows any sender as long as it is an
escrow from a valid market.

Rename threeCurveTokenBps  to weight , since that's the nomenclature used on the
convex smart contract.

10. Missing error messages

ENHANCEMENTENHANCEMENT

Some of the require  statements in following functions don't contain an error message:

https://github.com/InverseFinance/FiRM/commit/5f1f75a
https://camo.githubusercontent.com/82fbed3c10b426e21024c0a59cb961807b4468e7d92c780aaf257e201a9b5a45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d454e48414e43454d454e542d626c75652e737667
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/feeds/ConvexCurvePriceFeed.sol#L43
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/BorrowController.sol#L38
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/BorrowController.sol#L44
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Fed.sol#L41
https://camo.githubusercontent.com/82fbed3c10b426e21024c0a59cb961807b4468e7d92c780aaf257e201a9b5a45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d454e48414e43454d454e542d626c75652e737667
https://github.com/InverseFinance/FiRM/blob/dev/src/escrows/INVEscrow.sol#L44
https://camo.githubusercontent.com/82fbed3c10b426e21024c0a59cb961807b4468e7d92c780aaf257e201a9b5a45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d454e48414e43454d454e542d626c75652e737667
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/DbrDistributor.sol#L63
https://github.com/InverseFinance/FiRM/blob/dce1d28ab3af0ec637f05e7b3b14d5125714b0bd/src/escrows/ConvexCurveEscrow.sol#L98
https://camo.githubusercontent.com/82fbed3c10b426e21024c0a59cb961807b4468e7d92c780aaf257e201a9b5a45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d454e48414e43454d454e542d626c75652e737667


DbrDistributor.setRewardRateConstraints

DbrDistributor.setRewardRate

Fed.expansion

GOhmTokenEscrow.delegate

GovTokenEscrow.delegate

INVEscrow.delegate

Consider including error strings in all require  statements to improve the UX when

interacting with these functions.

11. Missing events

ENHANCEMENTENHANCEMENT

The functions in the DbrDistributor  contract don't emit events, which might make it

difficult for off-chain services to monitor the contract.

The Fed.takeProfit  function is missing an event that could be useful to, for example,

show the profits on a dune dashboard.

Most of the contracts are missing events for important administrative functions that

could be useful to increase awareness of critical changes.

12. Multiple storage reads

OPTIMIZATIONOPTIMIZATION

There are a few places in the codebase where a storage variable or mapping entry is

read multiple times. For example:

The Oracle.getNormalizedPrice  function reads feeds[token]  multiple times.

The Market.getEscrow  function reads escrows[user]  multiple times.

The Market.borrowInternal  function reads borrowController  multiple times.

The Market.repay  function reads borrowController  multiple times.

The Market.forceReplenish  function reads dbr  multiple times.

Recommendation

Consider storing these variable in memory to reduce the number of storage reads.

13. Variable is always 0

https://camo.githubusercontent.com/82fbed3c10b426e21024c0a59cb961807b4468e7d92c780aaf257e201a9b5a45/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d454e48414e43454d454e542d626c75652e737667
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Fed.sol#L138
https://camo.githubusercontent.com/90b5cfce6909a1f5a97f1e48fc9ae1a5f161a88e61eb44cde50b94ce91bdd836/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4f5054494d495a4154494f4e2d677265656e2e737667
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Oracle.sol#L136
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Market.sol#L258
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Market.sol#L402
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Market.sol#L544
https://github.com/InverseFinance/FiRM/blob/c1274c8f63da75d751944dde5f32223c4ee5d196/src/Market.sol#L578


OPTIMIZATIONOPTIMIZATION

When calculating the unsafeLiquidationIncentive  in the Market 's constructor, the
liquidationFeeBps  storage variable is used. However, this variable is not initialized

previously so its value is 0.

Recommendation

Consider removing liquidationFeeBps  from the calculation of
unsafeLiquidationIncentive  in the Market 's constructor.

https://camo.githubusercontent.com/90b5cfce6909a1f5a97f1e48fc9ae1a5f161a88e61eb44cde50b94ce91bdd836/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4f5054494d495a4154494f4e2d677265656e2e737667
https://github.com/InverseFinance/FiRM/blob/dev/src/Market.sol#L92

